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ON THE INVERSE OF PATTERNED MATRICES WITH
APPLICATION TO STATISTICAL MODELS

MEDANY D.MOUSTAFA & SANAA M.ELGAYAR

Faculty of Economics and Political Science
Cairo University , Giza , Egypt

ABSTRACT : '

The inverse of two patterned matrices is investigated. First for a Toeplitz-type
matrix A, it is proved that the exact number of independent cofactors is n (n+2)/4
when n is an even number and ( n+1)%/4 when n is odd. Second, when the matrix
is reduced to a Jacobi-type matrix B, , two equivalent formulae for its determinant
are obtained, one of which in terms of the eigen values. Moreover, it is proved
that the independent cofactors B; of B, are explicitly expressed as a product of
the determinants of B and B,;.So, the problem of finding the exact inverse of
B, is reduced to that one of finding the determinants of B; , i=1,2,...n.

1- INTRODUCTION

Let A, be an (nxm) syrﬁmetn'c,positive definite matrix. A, is said to bea
patterned matrix if its entries exibit a structured form, for example the Toeplitz
matrix , the Jacobi matrix,... .These patterned matrices are frequently encountered
as covariance matrices of structured dependent errors or observations in statistical
models or autoregressive and moving average time series models as well as in
many other stochastic models '],

One of the important problems involved in the analysis of such models is to find
the exact inverse of these covariance matrices in explicit form which leads to the
computation of determinants and other related characteristics such as their eigen
values and spectral representation. Such computations are tedious especially when

the order n of the matrix is large.
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There is a large litterature on inversion of covariance matrices (e.g. [3],[5] -
[10]).The problem has been approached either numerically to find fast algorithms
or analytically to find explicit forms for the entries of the inverse. Naturally,
analvtical solution leads to numerical one.

The purpose of this work is thus two folds. We first prove for a Toeplitz-type
matnix that the number of independent cofactors is exactly n(n+2)/4 for n even
and (n+1)*/4 for n odd. This reduces the number of distinct cofactors to a little bit
greater than the quarter of the total number n? of cofactors, which means that,
practically, only these distinct entries of the adjoint matrix need to be calculated.
Further, these distinct elements have a certain arrangement along each diagonal
on the upper half of the matrix. Second when the matrix is reduced to a Jacobi-
type matrix B,, two equivalent formulae for the determinant of B, are given, one
of them in terms of the eigen values of the matrix. Moreover, it is proved that the
independent cofactors Bj; of B, are exactly given by :

B = (-1Y" b det (Bi1) det (Bny) , i<j< n-i+l, i=1.2,......, ntl

when n is odd or /2 when n is even , and b is some entry of B, .

.So that the problem of finding the inverse of a Jacobi-matrix is reduced to that of
finding the determinant of B;, i=1,2,......,n.

2- THE ADJOINT OF A TOEPLITZ-TYPE MATRIX.

Suppose Aq= [aj;] is a Toeplitz matrix of order n having the form:
aj=ag;, 1<1j<n.
Let M; denote the submatrix of order n-1 obtained by deleting the ith row and
the jth column of' An, and let
Aj = (-l)lﬂdet (My) be the cofactor of a;. It is well-known that the

inverse A;of A, is given by:
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A,l, det (A,) = [Ay]', where t denotes the transpose of the matrix
= [Ay] , by symmetry of A, .
This means that A;j for all 1>) are redundant. The following lemma proves that
about the half of the remaining cofactors are redundant too.

In all what follows J,, denotes a reversing matrix of order n, namely :

00...01
I = 00...10
10...00

LEMMA 2.1:
Consider the matrix A, = (a1 ] Then forall 1<i1<j<n,
A= Anjtlnivt- o
Proof:

Let oy, Gz , -oeeeen. , a,‘!kdeg,ote the row vectors of Ay, and By, Ba,-.--..., Bn the
column vectors. Then, by symmetry of A,, o =f; . And by the structured
pattern of A,, o = Olirt Jn. It, thus follows that :

i = (Jn Buiet ) - (2.1)
and

Bi = (Otjet Ju )’ . (2.2)
(2.1) and (2.2) imply immediately that,

M = Jot Miaget, neivt et
from which ,

A= Agjrinint, forall 1€igj<n.
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THEOREM 2.1 :

Consider the matrix A, = [ a.j;] . If K denotes the number of independent

cofactors of A,, then:

{(n +1 )74 , n odd

n(n+2)/4, n even.

These independent cofactors are the elements A; with 1 < j <n-i+1,

=12,..., ﬂ*zi-l when n is odd orrz‘—when nis even .

Proof:

Suppose nis odd. Putn=2r+1,r=1.2,....... . It results from lemma 2.1 that the

independent cofactors are the (i,j) elements Aywith1<j <n-i+1,1=1,2, . r+1.

\r:l n.ii-l r+l  n-2itl
oA D TE S e
r+l

= _Zl (n-21+2)
l=

= (r+1)2

= (n+1)%/4 .

Now , let.n be even , n =2r with r a positive -integer. Then the independent
cofactors are those Aj withi= 1,2,... ,r ,1<j<n-i+l, so that

r n-i+l 3 a-2i+!

K= Z Z l(iJ)= E Z 1(i,s)

=1 J= i=1 5=0
=n(n+2)/4.
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REMARK 2.1

The independent cofactors are exactly the entries of the adjoint matrix
indicated by the hachured area

j

- ]
g f=n-i
C +1
L
n+l_n o .
c= 5 or—2—accordmg to n odd or even , respectively .

3- THE JACOBI- TYPE MATRIX :

In all this section we suppose that the matrix A, = [ aj;;] is now reduced to a

Jacobi -type matrix where aji;= 0 whenever |i-j|>1. Precisely , we suppose a

matrix B, = [ b;] such that:*

a, i
by = {b, j1-31=1 (3D
0, otherwise

3-1 THE DETERMINANT of B, :
Let _Dn = det(B,). Then by expansion about the first column, it can be shown
that Dy sz;tisﬁes the difference equation of second order :
Dy=aDei-b"Dpa, n=23
with the two boundary conditions Dy=1,D;=a.
The roots of the auxiliary equation y*-ay+b =0 are,

ya=(at h2-ap? )/2 which with the boundary conditions give the solution:
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1 n+ 25 o+
Dpy=—m—m™— [(a+/a2-4bz) -(a—Vaz-4b Y™, n=>0.
2% /aZ T ap? ..(3.2)

Expanding the binomials in (3.2) , D, reduced to :

n
D,=2"X% ( ::l') x*a™ withx = [/a*4b
b
2 2
7 d.\n +1 25 b° s . n
=(%) ;Z:=0( ) ( 1-4? ¥, with [-2-] denotes the
greatest integer <n_.
2
Expansion of the above binomial again yields
a [.lZi 5 o+l s 2
Du=G ) &, Zf0(as) () @& Y
4 3

—E@r X, (A Z Ge) (5.

The last summation can be proved to be exactly (7 ) 2™%, which leads to the
. r
expression :

5
.5 De=X, (-1 () oF ¥ n >0, [5]the greatest integer < %
.33)

3-2 THE EIGEN VALUES OF B, :

A is an eigen value of B, if A satisfies the linear equation B, Z=AZ, with Z a
nonzero column vector of dimension n, which is the eigen vector corresponding toA..
To find the eigen values of B, we are motivated by the approach relating this

problem to the characteristic-value problem of a finite homogeneous boundary

difference system of equations ( see [4]).
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In theorem 3.1 below we prove that the n eigen values of B, are exaclty the n
eigen values of a system of n difference equations with two boundary conditions,
and hence can be determined from the general solution of the system.
THEOREM 3.1:

Let B, be the Jacobi-type matrix given in (3.1) . The n eigen values Ay,

m=12, ... ,h of B, are exactly the n eigen values of the difference equation:
bzZms+1 + aZm + bz = AZn, m=1.2,..... ;/,n
with | »
Zy =0, Zw=0.
Hence ,
mn
Am = a- 2b cos x] c m= 1,2, .
Proof : .
LetZ=(z12....... z,)". Write the equation B, Z = AZ in the expansion form
az;+ bZz . =1z,
bz, + az, +bz; v =7z
bz 1 7aZntbZns = AZn

which is equivalent to the homogeneous system of difference equations

bZps+1 + aZy + bzt = Az , m=12,....... a,
with the two homogeneous boundary conditions zy=0, 2z, =0 .
For such a system , no nonzero solution exists unless A takes on one of a set of
eigen values Ay, ....... ,Aa which are exactly the required eigen values of B,. In
fact no nonzero solution to the above system exists unless |%' <1 or
equivalently unless A=a -2b cos 6 . In this case the general solution to the system

is zg= ¢ cosmb + ¢, sin m O . The condition zy= 0 implies ¢,=0 , and the second
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condition z,. = 0 leads to c;sin (n+1)0 =0,which unless 6 takes a value for which
sin(n+1)6=0, the only solution is ¢;= 0 , in which case z,=0, m =1,2,...... .
However | if (n+1)8=mn,m=1,2,...., c;is arbitrary and z, = 0.

Thus zgm # 0 whenever 6 =MT m=12....n, for in fact , all the other
values of m lead either tgtllle trival solution : when m= 0, n+1,2(n+1),...., or to
solutions identical to those obtained : when m takes on one of the integers in the
intervals (n+1, 2 (n+1)) ,(2 (n+1), 3(n+1)), ................ etc.

From all what preceedes , it follows that the required eigen values are :
An=2a-2b cos% ,m=12 ... , .
COROLLARY 3.1:

It can be easily shown that :

D"=n1111[ a-2b cos rhn-b_r_c]_] ..(3.4
which is another expression of det (B,).
3-3 THE INVERSE of B, :

" As proved in theorem 2.1 ,to. ﬁnd adj B, it suffices to calculate the cofactors
By , j=1i+l..., n-i+l, i=1,2..., %1 for n odd or % for n even . Observe that
-when deleting the ith row of By, , for any fixed i, the obtained submatrix gives the
following cofactors By, j =i,i+1,...., n-i+1,where ,
Bi =(-1)% det(B;,)det(B.), j=i, N 39
By =(-1)™ det (Cy)det (Buy), =i+, eiel,
with Cjj a square matrix of order (j-1) satisfying the relation :

det (C',J) =b det (Ci.j-l) , j=i+1,..,l’l-i+1,
..(36)
det (C;) = det(Bs.), J=



47

(3.6) is clearly a first order difference system of equations with boundary

condmon It can e easily shown that :
. 1Y

det (Cy) wb‘:det Bi) , j=1, 1+ L., n-i+l . - 3N
Varying 1,(3.5) together with (3.7) imply , thus , that:

By= (-1)"7 b det(Bi.)det (Bny), i<j<n-i=l,i=l,...,®L or —-as n

odd or even.
Clearly , this formula reflects the symmetry of cbfactors proved before for the
more general case by:lemma 2.1 . We can thus state the theorem: '
THEOREM 3.2: ~
For the matrix B, givenin (3.1), the mdependent cofactors B;; are exactly:

Bi=(-1)™ b det (Bi.1) det (B,,_J) j=ii+l,. n-it

1=12, ... n;‘ or Tasnodd or even .

Hence , if B!, = [BY] denotes thginverse of By, then

B =(-1)™ b det (B..) det (Boy)det Bu), joi,..n-i+l, i=12, ...,

o+l or —g— as n odd or even .
2

REMARK 3.1:

1-Tt follows from theorem 3.2 that , to find B it suffices 1o calculate the

‘ detemﬁnants of By,B, , ....B, which can be galculated using either formula
(3.3)or(3.4).

2- A statement similar to that of BY in:the theorem but for the inverse of the
covariance matrix of a first order moving average process has been observed

before by Arato 2! and then used shaman ' .
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4- APPLICATIONS :

In the following we give two examples of statistical models for which the

involved covariance matrix is of the Toeplitz or Jacobi types studied in this work.

EXAMPLE (1) :
Suppose ¥1,¥2, ....... , Yo Is an observed time series generated by a stationary
autoregressive process of order p given by :
Vi=01yi1 + Q2 yiz +... + Opyipt €, with (e;) a white noise process, that is
E(e)=0,V1,

0, i#j
E(eig;) ={. &, i=j.

. This means that all y; have bounded means and variances , precisely for all 1,

E(y) =0, E(yiyiri) = {::y ' ll::(())
Put, Yp=(yp+i .-.... Yo)
Yoo Yeu oo N i
Xp= Yg-l Y? ----«Yz_ .
LYl Yo2 ...o. Yop -
@ = (1 ... B ). _ )
Then , given yl, .+wes Yp, the least s‘quares géstimate of ©p is give_h by,

G, =(X,Xp)" X'y Yy, which , under the Gaussian assumption of the process , is
consistent , asymptotically normally distributed , namely :
7 (6,-0,) D, N, (0,6*A}), where,
Ap=[ai.;], which can be consistently éstimated by X'pXp.

A, is obviously a matrix of the Toeplitz-type studied in section 2.
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It is well-known that 'l the asymptotic theory is not altered if X',X, is replaced by
n-k
the matrix A,=[a}; ;] with a'x =%r2=l Yr¥ex, k=0,1.,p-1,in which case Ap

is again of the same pattern as A,,

Lemma 2.1 and theorem 2.1 are useful in calculating the inverse of A", which is

indispensable for making any inference concemingJ(-'-)p .
EXAMPLE (2) :

We consider the stationary normal first order moving average stochastic

process which is very common in time series analysis.

Here , if x;, 1= 1,..., n, is an observed finite series , then
X; =¢; + PBe;.1, with (e;) a gaussian white noise , and B, | B (<1 , 1s the parameter
to be estimated. _—
CPut X=(xi, ....... X,)! . Then.var X = B, , with B, a matrix of the Jacobi type as
given in section 3, with a= o (14+8%) , b =0’ B and & = var(e;),Vi .

The log-likelihood function is thus :

LB,X)=-%nlog2ro-%nX B'WXa.

Clearly. , the exact estimation of $ isnot an easy problem as long as the exact
. inverse of B, is not available. Theorem 3.2 together with corollary 3.1 can be
applied to obtain B, .



50

- \ Yo

4 T
RN PR TR bl

REFER!;;}JCES

R lizee FrediY

[1] Anderson,T.W. : The Statistical Analysis Of Time Series. John Wiley, New
York 1971

[2] Arato M On The Sufﬁcnent Slg,u.stlcs For Stationary Gaussian Random
Processes. Theor. Prob. Appl. 6 , 199-201, 1961.

[3] Friedland,S. : Inverse Eigen Value Problems For Symmetric 'l:c;eplitz )
... Matrices,..SIAM J. Matrix Agal:: and Appl . 13, 4, 1142- 1153 ,1992.
[4] Hildebrand, F.B. : Finite - DiffereriééEquations And Simulations. Prentice -

Hall , New Jersey , 1968. ... . ;-=
[5].Mentz, R.P.;. On The Inverse Of:Seme Covariance Matrices of Toeplitz Type
. SIAM J. Appl. Math. 31,3, 426-437, 1976. '

[6} - Mustafi- ;- CK:": The Inverse'/Of. AiCertain Matrix, with Appllcatlon Annvt i

Math. Stat:-38,.1289-1292, 1967 - B

[7] Shaman, P. : On The Inverse Of The Coyaxiance,MfiﬁiiX’of A first or‘cie}
Moving Average . Biometrika; 56,3{595- 600 , 1969. *** |

[8] . = ‘.= On‘Fhe Hiverse Of Thé Ebvaridnce Matrix For AH}Autdregfesgive-
Moving Avérage Process. Biometitka 60, 1,193-196, 1973

[9] Shu-Farig Xu : On the Jacobi Matrix Inverse Eigen Value Problem With
Mixed Given Data. SIAM J. Matrix Anal . and Appl . 17,3,632-639 1996.

[10] Trench , W. F. : On The Eigen Problem For A class of Band Matrices
Including Those With Toeplitz Inverses. SIAM J. Alg . Disc . Meth. 7,
2,167-179, 1986.


http://www.tcpdf.org

